
Biometrika (2001), 88, 3, pp. 793–804

© 2001 Biometrika Trust

Printed in Great Britain

Isotonic regression: Another look at the changepoint problem

B WEI BIAO WU, MICHAEL WOODROOFE  GRACIELA MENTZ

Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

wbwu@umich.edu michaelw@umich.edu gmentz@umich.edu

S

A test based on isotonic regression is developed for monotonic trends in short range
dependent sequences and is applied to Argentina rainfall data and global warming data.
This test provides another perspective for changepoint problems. The isotonic test is
shown to be more powerful than some existing tests for trend.
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1. I

It is often important to be able to test stationarity of a given time series. Here interest
centres on stationarity of the mean, and the process of interest is assumed to be of the
form

X
k
=m

k
+Z

k
, (1)

where the m
k
are the means and Z

k
is a stationary process with mean 0 and finite covari-

ances c(k)=cov (Z
i
, Z

i+k
)=E(Z0Zk

). For this scenario, there has been both classical work
on testing for the existence of a trend and more recent work on tests for an abrupt change.
The present work falls between these two approaches in developing a test for a change,
or trend, that is monotonic but otherwise arbitrary. Thus, it is assumed throughout that
m1∏m2∏ . . .∏m

n
, where n is the length of the series, and the hypothesis of interest is

H: m
k
=m1 (2)

for all k, to be tested against the alternative that m
k
<m

k+1
for some k. Darkhovsky (1994)

and Brodsky & Darkhovsky (1993) show that general changepoint problems can be
reduced to the problem of testing the mean stability of some new sequences. The type of
testing we consider is off-line, in that the data X=X

n
= (X1 , . . . , Xn

) have already been
obtained before the analysis. The trend {m

k
} is sometimes called the signal and the process

{Z
k
} is the background noise or errors.

The formulation is motivated in part by Argentina rainfall data provided by Eng Cesar
Lamelas, a meteorologist from the Agricultural Experimental Station Obispo Colombres,
Tucumán. This dataset contains monthly rainfall records collected from 1884 to 1996; see
Fig. 1 below. Lamelas believes that there was a change in the mean, caused by the construc-
tion of a dam in Tucumán from 1952 to 1962.

Early work on the changepoint problem mainly concerned the simple model in which
the {Z

k
} are independent and the {m

k
} only take two possible values. Then the alternative
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hypothesis has the form

H1 : m1=m2= . . .=m
t
Nm

t+1
= . . .=m

n
,

for some unknown changepoint t such that 1∏t∏n. The classical changepoint problem
is to test for the existence of a changepoint and estimate its location if it exists.
Bhattacharya (1994) and Siegmund (1986) have written review articles, and Shaban (1980)
has complied an annotated bibliography. Extensions of the simple changepoint model
either allow more general change patterns or relax the independence assumption of {Z

k
};

dependence is inevitable in the study of time series. This complicates the testing procedures.
Lombard & Hart (1994) consider the simple abrupt change model with dependent errors;
see also Brodsky & Darkhovsky (1993, Ch. 3), where strong mixing conditions are
imposed. Lavielle & Moulines (1997) consider estimation and testing of multiple changes
in the mean of strong mixing random processes. The assumed mean function is piecewise
constant with an unknown number of pieces.

Woodward & Gray (1993) perform a test of the existence of a linear trend in autoregress-
ive moving average models with applications to global warming. For examples like the
Argentina rainfall data, linearity is not expected, so that a nonparametric test is desirable;
Brodsky & Darkhovsky (1993) present a systematic account of nonparametric methods,
and Brillinger (1989) develops a test for monotonic trends with dependent errors. The
latter two papers contain many further references to test for trend. Inference based on the
monotonicity assumption is discussed in Robertson et al. (1988). In the context of density
estimation, Woodroofe & Sun (1999) establish a test for uniformity versus a monotonicity.
We show that our test statistic based on isotonic regression is asymptotically more power-
ful than the one proposed by Brillinger (1989).

The test statistic is presented in § 2 and illustrated by examples in § 3. Section 4 contains
a power study and a comparison with Brillinger’s test. Proofs are given in the Appendix.

2. T  

2·1. Preamble: Independent identically distributed normal errors

In § 2·1, we assume that the {Z
k
} in (1) are independent normal random variables with

mean 0 and known variance s2. Then the loglikelihood function is

l(m |X)=−
1

2s2
∑
n

i=1
(X

i
−m

i
)2+C, (3)

where C denotes a generic constant that does not depend on m. The parameter m takes
values in the space

V={m=(m1 , . . . , m
n
)µRn : m1∏m2∏ . . .∏m

n
}. (4)

Then the maximum likelihood estimator m@=arg max
mµV

l(m |X) is given by

m@ k=max
i∏k

min
j�k

X
i
+ . . .+X

j
j− i+1

(5)

(Robertson et al., 1988, p. 24). Under the null hypothesis H0 , the maximum likelihood
estimator is obviously m:=X9 =n−1Wn

k=1
X
i
. The exact distribution of the likelihood ratio

test statistic 2{l(m@ |X)−l (m: |X)} is given in Robertson et al. (1988, Ch. 2). As shown below,
this test statistic is affected by the so-called spiking problem in large samples, in that m@1
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is too small while m@
n
is too large. Instead of (3), therefore, we shall consider the penalised

loglikelihood function

l
n,r

(m |X)=−
1

2s2
∑
n

i=1
(X

i
−m

i
)2−

r√n

s2
(m
n
−m1)+C,

where the term r√n(m
n
−m1 ) penalises large m

n
−m1 . Let X

1,r
=X1+r√n, X

n,r
=X

n
−r√n

and X
i,r
=X

i
for 2∏ i∏n−1. Then

l
n,r

(m |X)=−
1

2s2
∑
n

i=1
(X

i,r
−m

i
)2+C, (6)

maximised at

m
k
=m@

k,r
=max

i∏k
min
j�k

X
i,r
+ . . .+X

j,r
j− i+1

, (7)

which is just formula (5) with X
i
replaced by X

i,r
. Furthermore,

∑
n

k=1
m@
k,r
= ∑

n

k=1
X
k,r
=nX9 ,

which suggests a test statistic of the form

L
n,r
=

1

s@2
n
∑
n

k=1
(m@
k,r
−X9 )2, (8)

where s@2
n

is a consistent estimator of s2. If s2 is known and s@2
n
=s2, then L

n,r
is the

penalised loglikelihood ratio statistic. The asymptotic null distribution of L
n,r

is presented
in §§ 2·2 and 2·3.

2·2. Short-range dependent errors

For the remainder of § 2, suppose that the stationary sequence Z
k
exhibits short range

dependence in the following way. First, suppose that the covariances c(k)=E(Z0Zk
) are

absolutely summable:

∑
2

k=0
|c(k) |<2. (9)

Next let T
k
=Wk

i=1
Z
i
, let T

n
be a continuous piecewise linear function for which T

n
( t)=

T
k
for t=k/n and k=0, 1, . . . , n, and suppose that

T
n

s√n

W (10)

in distribution in C[0, 1], where W is a standard Brownian Motion and

s2=c(0)+2 ∑
2

k=1
c(k). (11)

There are many families of processes for which (10) is satisfied. If Z
k
is a linear process,

Z
k
=W2

j=0
a
j
e
k−j

, say, where the e
j
are independent and identically distributed with mean

0 and finite variance and the a
j

are absolutely summable, then (10) holds. Nonlinear
processes that exhibit suitable mixing conditions satisfy (10); see Peligrad’s (1986) review.



796 W. B. W, M. W  G. M

If we do not assume strong mixing, sufficient conditions are that E( |Z
k
|p )<2 for some

p>2 and that

∑
2

k=1
k−aE{E(T

k
| . . . , Z

−1 , Z0 )2}<2

for some a<2; see Maxwell & Woodroofe (2000).
The asymptotic distribution of L

n,r
is obtained in Theorems 1 and 2 below for local

alternatives. For Theorem 1, suppose that

m
k
=m+

s

√n
w AknB , (12)

where w is a right-continuous, nondecreasing function on [0, 1] for which

P 1
0

w(t) dt=0.

The asymptotic null distribution is then a special case with w=0. Let c=r/s, let
S
k,r
=Wk

i=1
X
i,r

, let G
n,r

(t), for tµ[0, 1], be a continuous, piecewise linear function for
which G

n,r
(k/n)=S

k,r
/n for k=1, . . . , n, and write S

k
and G

n
for S

k,0
and G

n,0
. Define

H
n,r

(t)=
√n

s
{G

n,r
(t)−X9 t}.

Let functions L
n,r

and W
n

be continuous and piecewise linear for which

L
n,r

(0)=L
n,r

(1)=0, L
n,r A1nB=L

n,r A1− 1

nB= r

√n
, W

n AknB=n−1 ∑
k

p=1
w ApnB .

Then

H
n,r

(t)=
T
n
(t)−tT

n
(1)

s√n
+W

n
(t)−tW

n
(1)+

√n

s
L
n,r

(t). (13)

Let W (t)=∆t
0

w(s) ds and define

Bw
c
(t)=W (t)−tW (1)+W(t)+c 1(0,1)(t). (14)

Also, write B
c

for Bw
c

when w¬0. Finally, if H is a bounded function on [0, 1], let HB
denote the greatest convex minorant of H and let hA denote the left-hand derivative of HB .
Thus bAw

c
is the left-hand derivative of the greatest convex minorant of Bw

c
. Then

−2<bAw
c
(0+)∏bAw

c
(1−)<2 with probability 1, by Lemma 6 of Woodroofe & Sun (1999).

T 1. If (9), (10) and (12) hold, then

1

s2
∑
n

k=1
(m@
k,r
−X9 )2
 P 1

0
{bAw
c
(t)}2 dt (15)

in distribution, where c=r/s.

Proof. From Robertson et al. (1988, p. 7), m@
k,r
=gAn,r(k/n) for k=1, . . . , n. Thus

m@
k,r
−X9 =shA

n,r
(k/n)/√n since G

n,r
and H

n,r
are linearly related, and therefore

1

s2
∑
n

k=1
(m@ k,r−X9 )2= P 1

0
{hA
n,r

(t)}2 dt. (16)
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Thus it is necessary to show that the right-hand side of (16) converges in distribution to
the right-hand side of (15). This seems plausible in view of (10) and (13). Details may be
found in the Appendix.

Remark 1. If c=0, then the right-hand side of (15) is infinity with probability 1; see
Groeneboom & Pyke (1983). This is the spiking problem mentioned above. The left-hand
side of (15) does not have a nondegenerate asymptotic distribution under null hypothesis.

Remark 2. In the context of classical changepoint analysis, there is a similar problem.
Suppose we want to test

H1 : m1= . . .=m
t
<m

t+1
= . . .=m

n
.

Let X9 r=r−1Wr
i=1

X
i

and X9 ∞n−r= (n−r)−1Wn
i=r+1

X
i
. It is mentioned in § 2·4 of

Bhattacharya (1994) that the test statistic based on the likelihoood ratio

max
1∏r∏n−1

{r−1+ (n−r)−1}−D (X9 ∞n−r−X9 r)

does not have an asymptotic distribution, since it becomes unstable at the two ends.

2·3. Estimating s2
If the Z

k
were observed, then the covariance function c(k)=E(Z0Zk

) could be estimated
by the sample covariances c:n (k)=n−1Wn−k

i=1
Z
i
Z
i+k

. Then s2 could be estimated by the lag
window estimators

s:2n=c:n (0)+2 ∑
m
n

k=1
w A km

n
B c:n (k), (17)

where the lag window w satisfies w(0)=1, w(x)=0 for |x |�1 and |w(x) |∏1 for all x; see
Brockwell & Davis (1991, eqn (10.4.8)). Under conditions of their Theorem 10.4.1, s:2n is
a consistent estimator of s2 provided that m

n

2 and m

n
=o(n).

Recall that the unpenalised isotonic regression estimator m@ is given by (5). Hence the
detrended process is ZC

k
=X

k
−m@

k
. Note that the sum of residuals Wn

i=1
ZC
k
=0. Let

c@
n
(k)=

1

n
∑
n−k

i=1
ZC
i
ZC
i+k

(18)

and consider estimators of the form

s@2n=c@
n
(0)+2 ∑

m
n

k=1
w A km

n
B c@n (k), (19)

where m
n

2 and m

n
=o(n).

T 2. Assume that the Z
k

satisfy (9) and (10), and that m
k

is of the form (12). If
m
n

2, m

n
=o(√n) and s:2n is a consistent estimator of s2, then s@ 2

n
converges to s2 in

probability.

Proof. In view of (17), it suffices to show that

max
0∏k∏n−1

|c@
n
(k)−c:n (k) |=O

p
(n−D); (20)

see the Appendix for details.
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Meyer & Woodroofe (2000) have established the asymptotic normality of c@
n
(0) when

the errors are independent and normally distributed.
In the remainder of the paper L

n,r
is defined by (8) with s@2n defined by (19).

C 1. Suppose that H0 is true. T hen, under the conditions of T heorem 2,

L
n,r

 P 1

0
{bA
c
( t)}2 dt (21)

in distribution, where c=r/s.

In practice, r must be cs@ n . This does not affect the asymptotic distribution.

3. A

3·1. Estimation of the asymptotic null distribution of L
n,r

The asymptotic null distribution of L
n,r

is complicated, but percentiles can be computed
by simulation. We simulated 30 000 Brownian motions and computed the right-hand side
of (21) for each of them. The asymptotic null distribution was estimated from these values.
Brownian motion was simulated by generating standard normal variates Z

k
and forming

piecewise linear functions with values (Z1+ . . .+Z
k
)/√n at t=k/n for k=1, . . . , n. The

number of grid points was n=20, 50, 100, 200, 500, 1000, 2000 and 4000. The critical
values l

c
(a) are given in Table 1 for a=0·05 and 0·01 and c=0·05, 0·10 and 0·15.

Table 1. Critical values l
c
(a) for c=0·05, 0·1, 0·15

and a=0·01, 0·05

n c=0·15 c=0·10 c=0·05
0·05 0·01 0·05 0·01 0·05 0·01

20 5·32 8·65 6·10 9·62 7·01 10·76
50 6·01 9·47 6·99 10·68 8·16 12·27

100 6·59 10·27 7·70 11·58 9·13 13·36
200 6·95 10·74 8·17 12·23 9·82 14·30
500 7·19 11·27 8·58 12·85 10·49 15·30

1000 7·34 11·39 8·70 12·98 10·70 15·25
2000 7·45 11·35 8·88 13·03 11·02 15·56
4000 7·49 11·35 8·95 13·18 11·13 15·58

In the examples below, we used the values c=0·15 and m
n
=n1/3, and the truncated

window, namely w(x)=1, for |x |∏1, and w(x)=0 otherwise. These values performed well
in simulations, and 0·15 was chosen for c after comparing power curves for selected
alternatives. Programs in S-Plus and Matlab and the Argentina rainfall data below are
available at www.stat.lsa.umich.edu/~michaelw.

3·2. Argentina rainfall data

Figure 1 shows the volume of yearly rainfall in Argentina from 1884 to 1996 along with
the penalised and unpenalised isotonic regression functions. There is a mild spiking prob-
lem: the year 1884 has a low value. The spiking problem is clearly suppressed in the
penalised isotonic regression. From an autocorrelation plot, the residuals appear to be
short range dependent. Only the eighth of the first twenty autocorrelations is significant
at the 0·05 level. From (8) and (19), s@2=253·57 and L

n,r
=17·95, which is significant at
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Fig. 1. Argentina rainfall data: yearly rainfall (millimetres) in Argentina
from 1884 to 1996 with its penalised (dashed line) and unpenalised

(dotted) isotonic regression functions.

the 0·01 level since the 0·99 quantile is between 10·27 and 10·74 from Table 1. Thus the
apparent increase in the mean is highly significant.

From the penalised isotonic regression in Fig. 1, we can see there is a large jump around
the years 1955–1956. This observation justifies the belief of meteorologist Eng Cesar
Lamelas that the increase might be caused by the construction of a dam. The mean rainfall
volume is 76·34 before 1956 and 90·11 after 1956.

Now let us consider Brillinger’s test. If we use the estimated variance s@ 2=253·57, the
test statistic, see Brillinger (1989, eqn (2.3)), is

Wn
k=1

j(k)X
k

s@{Wn
k=1

j2(k)}D
=

41·0621

29·1645
=1·4079,

where

j( t)=[(t−1){1−(t/n−1/n)}]D−{t(1−t/n)}D (1∏t∏n).

Then the p-value is pr (Z>1·4079)=0·0796, where Z is standard normal. Hence, at the
5% level of significance, Brillinger’s test is unable to detect the trend. Section 4 contains
some power comparisons.

3·3. Global warming data

The issue of global warming has received wide attention recently within the scientific
community and more generally; see Melillo (1999) and Delworth & Knutson (2000) for
some scientific perspectives. The question is whether the observed monotonic trend is
caused by natural variability or by greenhouse gases generated by human activity. In this
paper, we interpret the former as the short range dependent background noise and the
latter as the mean trend. We are therefore testing nonparametrically for an increase.

The global warming data considered in this paper are provided by P. D. Jones et al.,
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see http://cdiac.esd.ornl.gov/trends/temp/jonescru/jones.html. They contain annual tem-
perature anomalies from 1856 to 1998; see Fig. 2. The estimated variance and test statistic
are s@2=0·01558 and L

n,r
=349·495; the latter is highly significant, beyond the range of

Table 1. Brillinger’s test also gives highly significant results in this case.
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Fig. 2. Global warming data: annual temperature anomalies from 1856
to 1999 (relative to the 1961–1990 mean) with its penalised isotonic

regression (dashed lines).

4. P 

In this section, the power of our test statistic L
n,r

is compared to that of the test proposed
by Brillinger. Suppose that the trend has the form

m
k
=

d

√n
w AknB (d>0), (22)

where w is a nondecreasing function with ∆1
0

w(t) dt=0. The test developed by Brillinger
(1989) is unable to detect the trend (22) with d=d

n

2 and d

n
=o{( log n)D}; see

Brillinger’s equation (3.2).
On the other hand, suppose that w is not identically 0. Then, by Theorem 1, the asymp-

totic power of test based on (8) is given by pr[∆1
0
{bArw
c

(t)}2 dt>l
c
(a)], where r=d/s. By

Proposition 1 below, this power converges to 1 if d
n

2.

P 1. L et J
n
(t)=W( t)+r−1

n
B
c
(t), for tµ[0, 1]. T hen, as r

n

2,

d jA
n
d2
2
=dwd2

2
+O

P
(r−D
n

).

Proof. By Marshall’s lemma, dJB
n
−Wd=O

P
(r−1
n

). Observe that

jA
n
(0+)= inf

0<t∏1

J
n
(t)

t
=O

P
(1)
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and similarly that jA
n
(1)=O

P
(1). Then Lemma A3 in the Appendix completes the proof.

%

Figure 3(a) presents a simulated power study, when Z
k
are independent and identically

distributed as standard normal, m
k
=−D , for 1∏k∏100, m

k
=D , for 101∏k∏200, and

d=k/100, for k=0, 1, . . . , 99. From the plot, we see that the testing procedure based on
isotonic regression is more powerful than Brillinger’s test. The uniformly most powerful
test, of course, is the best of the three. In Fig. 3(b), the mean function is linear: m(k)=
k/200−0·5, for 1∏k∏200, and d=k/100, for k=0, 1, . . . , 99. Similar conclusions hold.
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Fig. 3. Power curves for the uniformly most powerful test (dot-dashed lines), the isotonic regression test
(dashed) and Brillinger’s (1989) test (dotted) for (a) step function with independently distributed N(0, 1)

errors, and (b) linear function with independently distributed N(0, 1) errors.
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A

Proofs

Proof of T heorem 1. The proof uses strong approximation. If the probability space is sufficiently
rich, then there are versions T∞

n
of T

n
and Brownian motions W

n
such that

sup
0∏t∏1

| (s√n)−1T∞
n
(t)−W

n
( t) |
0

in probability, and there is no loss of generality in supposing that T∞
n
=T

n
for the purposes of

proving Theorem 1.
Recall the definitions (13) and (14) of H

n
and Bw

c
and relation (16), and define Bw

n,c
by (14) with

W replaced by W
n
. Then it suffices to show that

P 1
0

{hA
n
(t)}2 dt− P 1

0
{bAw
n,c

(t)}2 dt
0 (A1)

in probability as n
2, since ∆1
0
{bAw
n,c

(t)}2 dt has the same distribution as ∆1
0
{bAw
c
(t)}2 dt for all n.
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The following lemmas are from Woodroofe & Sun (1999). In their statements, G and H are bounded
functions on [0, 1] and dGd=sup

0∏t∏1
|G(t) |.

L A1. If G is lower semi-continuous at 0 (respectively, 1), then GB (0)=G(0) (respectively,
GB (1)=G(1)).

L A2. If Bk[0, 1], |G(t)−H(t) |∏e, for all tµB, and |GB (t)−HB (t) |∏e, for all tµB∞, then
dGB−HB d∏e.

L A3. If

GB (0)=HB (0), GB (1)=HB (1) (−2<gA(0+)∏gA (1−)<2, −2<hA(0+)∏hA (1−)<2 ),

then

P 1
0

{hA(t)−gA(t)}2 dt∏dHB −GB d{gA(1−)−gA(0+)+hA (1−)−hA (0+)}.

L A4. For any c>0,−2<bAw
c
(0+)∏bAw

c
(1−)<2 with probability 1. Furthermore, hA

n
(0+)

and hA
n
(1−) are stochastically bounded.

Proofs. Lemmas A1, A2 and A3 follow by adapting Lemmas 1, 2 and 3 of Woodroofe & Sun
(1999) from the nonincreasing case to the nondecreasing one, and the first assertion of Lemma A4
is contained in Lemma 6 of Woodroofe & Sun (1999). For the stochastic boundedness, first write

pr{hA
n
(0+)<−l}=prA√n min

k∏n

S
k,r

sk
<−lB

∏prAmax
k∏nd K Sks(nd)DK> c

√dB+prA max
nd∏k∏n K Sks√n K>l√dB ,

with d=1/√l. Since max
k∏n
|S
k
/√n | is stochastically bounded, it then follows that

pr{hA
n
(0+)<−l}
0, as first n
2 and then l
2. This establishes the stochastic boundedness

of hA
n
(0+). The right endpoint may be handled similarly.

To apply the lemmas to the problem at hand, first observe that

BB w
n,c

(0)=0=HB
n
(0), BB w

n,c
(1)=0=HB

n
(1)

by Lemma A1. Thus,

P 1
0

{hA
n
(t)−bAw

n,c
( t)}2 dt∏dHB

n
−BB w

n,c
d{hA

n
(1−)−hA

n
(0+)+bAw

n,c
(1−)−bAw

n,c
(0+)}.

The second factor on the right-hand side is stochastically bounded, by Lemma A4. Thus it suffices
to show that the first factor approaches 0 as n
2. If t∏1/n, then

|HB
n
(t)−BB w

n,c
(t) |+|HB

n
(1−t)−BB w

n,c
(1−t) |∏2

|hA
n
(1−) |+|hA

n
(0+) |+|bAw

n,c
(1−) |+|bAw

n,c
(0+) |

n
,

which approaches 0 in probability. On the other hand, if 1/n∏t∏1−1/n, then

|H
n
(t)−Bw

n,c
( t) |∏2 L Tns√n

−W
nL+dW

n
−Wd,

which also approaches 0 in probability as n
2. That dHB
n
−BA w

n,c
d
0 in probability as n
2

now follows from Lemma A2 with B=[1/n, 1−1/n], completing the proof of (A1) and, therefore,
of Theorem 1. %

Proof of (20). The following lemma is needed.
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L A5. If −2<a1∏ . . .∏a
n
<2 and −2<b1 , . . . , bn<2, then

K ∑n
j=1

a
j
b
j K∏{ |a

n
|+ (a

n
−a1 )} max

j∏n K ∑ji=1 b
i K .

Proof. Let B
k
=b1+ . . .+b

k
. Then the term on the left-hand side is

K anBn− ∑n
j=2

(a
j
−a

j−1
)B
j−1 K∏{ |a

n
|+ (a

n
−a1 )} max

j∏n
|B
j
|,

as asserted.

To prove (20), now write

c@
n
(k)−c:n(k)=

1

n
∑
n−k

i=1
(ZC
i
ZC
i+k
−Z

i
Z
i+k

)=I
n
(k)+II

n
(k)+III

n
(k),

where

I
n
(k)=

1

n
∑
n−k

i=1
(m
i
−m@ i )Zi+k

, II
n
(k)=

1

n
∑
n−k

i=1
Z
i
(m
i+k
−m@ i+k ),

III
n
(k)=

1

n
∑
n−k

i=1
(m
i
−m@

i
)(m

i+k
−m@

i+k
).

Here

I
n
(k)∏2{ |m

n
|+|m1 |+|m@1 |+|m@ n |} max

j∏n
|Z1+ . . .+Z

j
|/n

for each k, and m@ n and m@ 1 are stochastically bounded, by Lemma A4. Thus max
j∏n
|I
n
(k) |=O

P
(n−D ),

and similarly max
j∏n
|II

n
(k) |=O

P
(n−D). For III

n
(k), let m: n=n−1Wn

k=1
m
k

Then

∑
n

i=1
(m@
i
−m

i
)2∏4 ∑

n

i=1
(m@
i
−X9 n)2+4 ∑

n

i=1
(m
i
−m: n )2+4n(X9 n−m: n )2,

which is stochastically bounded, by Theorem 1, (9) and (12). That max
k∏n
|III

n
(k) |=O

P
(1/n) then

follows from Schwarz’s inequality. %
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